Towards a Bootstrapping NLIDB System

Catalina Hallett and David Hardcastle

The Open University, Walton Hall
Milton Keynes, MK6 7TAA, UK

Abstract. This paper presents the results of a feasibility study for a
bootstrapping natural language database query interface which uses nat-
ural language generation (NLG) technology to address the interpretation
problem faced by existing NLIDB systems. In particular we assess the
feasibility of automatically acquiring the requisite semantic and linguis-
tic resources for the NLG component using the database metadata and
data content, a domain-specific ontology and a corpus of associated text
documents, such as end-user manuals, for example.

1 Introduction

This paper presents the results of a feasibility study for bootstrapping a natural
language database query interface which uses natural language generation (NLG)
technology to address the interpretation problem faced by existing NLIDB sys-
tems. The query system presents the user with an interactive natural language
text which can be extended and amended using context sensitive menus driven
by Conceptual Authoring. Using NLG to allow the user to develop the query
ensures accuracy and clarity. When the user submits the query the semantic
representation is transformed into a valid sQL statement. A detailed discussion
of the technology and an evaluation which showed the system to be a reliable
and effective means for domain experts to pose complex queries to a relational
database is presented by Hallett et al. [I].

While this approach delivers clear benefits, they come at a cost; domain ex-
pertise is required to construct the semantic resources, linguistic expertise is
required to map this domain knowledge onto the language resources, and knowl-
edge of the database structure is needed to map it onto a valid query structure.
Our proposed solution is for the system to infer the resources and mappings
required from a domain ontology, the database metadata and data content and
a corpus of domain-specific texts. The feasibility study reported in this paper
demonstrated that we can, in principle, infer the required resources from a sim-
ple, highly normalised database with well-formed lexical descriptors such as MS
Northwind or Petstore. However, it also highlighted the need to couple metadata
mining with analysis of external sources of information.

1.1 Related Work

Providing user-friendly query interfaces for casual and non-specialist users, which
alleviate the need for programmatic knowledge is a central problem for the data

E. Kapetanios, V. Sugumaran, M. Spiliopoulou (Eds.): NLDB 2008, LNCS 5039, pp. 199-204] 2008.
© Springer-Verlag Berlin Heidelberg 2008

200 C. Hallett and D. Hardcastle

querying community. Whether these interfaces are form-based, visual, or natural
language-based, knowledge about the data source structure and content is es-
sential to the construction of intuitive interfaces. Traditionally, natural language
interfaces to databases (henceforth, NLIDB) work in two steps:

— query interpretation: a natural language query entered by the user is parsed
into a logical representation

— query translation: the logical representation of a query is mapped to a
database querying language

It is evident that the query interpretation process requires both extensive linguis-
tic resources for understanding the query, whilst the query translation step re-
quires semantic resources for mapping query terms to database entities. In early
NLIDBs, these resources (such as semantic grammars and lexicons) were created
through an extensive manual process, resulting in heavily database-dependent
systems.

The issue of interface portability was first highlighted in the early 1980’s, and
the fact that database schemas could be used to acquire domain knowledge has
been exploited in systems such as co-oP [2] and INTELLECT [3]. These systems
also demonstrated that a modular architecture might allow query interfaces to
be ported without code changes. Although these systems made some use of the
database schema to map query terms to database entities, porting the interface
to a new database still required extensive reworking of the lexicon, although the
introduction of generic linguistic front-ends, in which the query interpretation
stage is independent of the underlying database (see [4]), reduced the impact.
Current NLIDB systems employ a variety of machine learning techniques in order
to infer semantic parsers automatically [5J6] or to improve syntactic parsers with
domain specific information [7]. However, these systems require large sets of
annotated SQL queries for training purposes. The PRECISE system [8] employs a
semantic model in order to correct and enhance the performance of a statistical
parser, and so requires far less training data. Customization of the semantic
model remains an issue, and the system is restricted to a set of semantically
tractable queries, which impairs coverage.

1.2 Query Interfaces Based on Conceptual Authoring

Conceptual Authoring (CA) using NLG [9] has been employed as an alternative to
natural language input in order to remove the query interpretation step [IJI0].
In querying systems based on CA, the query is constructed incrementally by
the user, through successive interactions with a natural language text (termed
feedback text). Changes to the feedback text directly reflect underlying changes
to the semantic content of the query; so whilst the user is always presented with
a natural language text, the query is always encoded in a structured internal
representation. CA has been used successfully in building query interfaces [1I10]
with evaluation showing positive user feedback and a clear preference over using

sqL [1].

Towards a Bootstrapping NLIDB System 201

The feedback text shown in Figure 1 represents a simple SELECT query against
the Orders table of the MS Northwind database, expressed by the SQL query in
Figure 2. The words in square brackets are anchors and represent sites where the
user can reconfigure the query; for example by changing a literal value, setting
an aggregate function, removing a selection criterion or adding further criteria
or ordering conditions.

List orders which

- were processed by [any employee]

- conisted of [total freight]

- were shipped between [1/4/97] and [3/31/98]
- [further criteria] ordered by [total freight]

Fig. 1. A sample feedback text query

SELECT Orders.EmployeeID, Sum(Orders.Freight) AS Shipping
FROM Orders

WHERE Orders.ShippedDate Between #4/1/1997# And #3/31/1998%#
GROUP BY Orders.EmployeelD

ORDER BY Sum(Orders.Freight) DESC;

Fig. 2. The sQL produced by the query represented in Figure 1

2 Feasibility Study

In a previous attempt [I1], we investigated the possibility of inferring some basic
resources automatically, however this attempt did not reach far enough and it
also resulted in relatively clumsy natural language queries. In this section we pro-
vide a high level summary of a recent feasibility study undertaken by the authors;
a more complete discussion is presented in an auxiliary technical report [12].

The feasibility study focused on a prototype which is a modified version of a
previous CA-based query interface [I]. We leave the task of inferring the domain
ontology to others [I3], and focus on the inferencing of the resources required
by the NLG system. The prototype receives as input a model of the database
semantics and a domain ontology, and it automatically generates some of the
components and resources that in previous Conceptual Authoring querying sys-
tems were constructed manually, along with a module which translates the user-
composed query into SQL . The resulting query system provides a user interface
based on a feedback text (see Section [[2]) which is generated by the query sys-
tem from a semantic graph. User interaction with the feedback text results in
changes to the underlying semantic representation and a new feedback text is
generated to update the display. When the query is run the underlying repre-
sentation is converted to SQL using the model of the database semantics from
which the query interface system was inferred.

202 C. Hallett and D. Hardcastle

Table 1. Evaluation results

Petstore Northwind
Actual|ldentified |Accuracy|Actual|ldentified |Accuracy
Entities 28 28 100% 49 49 100%
Relations 30 28 93.3% 61 61 100%
Entity lexical desc |28 22 78.5% |49 49 100%
Relation lexical desc |30 20 5% 61 33 54%
Entity part-of-speech|30 30 100% 49 49 100%
subcat frames 30 20 75% 61 33 54%

Although the system is supplied with a domain ontology it still needs to
analyse the structure of the database to support the mapping from the seman-
tic model to syntactic and lexical resources. The metadata analysis focused on
the following elements as described in the SQL-92 Information Schema: Domain
Descriptors (§4.7), Column Descriptors (§4.8), Table Descriptors (§4.9), and Ta-
ble and Domain Integrity Constraints (§4.10). Since both sample databases are
highly normalised a simplistic approach in which tables are identified as kernel
entities and their columns are represented as properties was productive, and
foreign key definitions sufficed to infer associations between kernel entities. In
commercial databases, in the authors’ experience, the system would need to lo-
cate inner associative entities, and although Query Expression metadata from
derived tables and view definitions would aid this process it would be unlikely
to prove sufficient. We propose to address this problem by looking at related
metadata such as ERDs and ORM mappings.

The system also requires linguistic resources in order to represent the query as
text. Some linguistic resources, such as the grammar and lexicon, are reusable,
but the mappings from the ontology to the linguistic resources must be inferred.
For example, the system needs to choose an appropriate lexicalization for each
entity, and an appropriate syntactic frame and lexicalization for each association.
It also requires domain-specific semantic and linguistic resources to manage lit-
eral values, spatial and temporal modifiers and sub-language jargon. In the case
of the prototype, the identification of the lexical descriptors was made easier
due to the fact that both databases use clear and reliable column naming con-
ventions, a feature which could not be relied upon in a commercial database.
In future versions of the system we intend to use related corpora, such as user
manuals or domain-specific technical documentation, to support the inferencing
of semantic and linguistic resources and the generation of mappings between the
concepts in the domain ontology and the syntactic subcategorisations and lexical
anchors required to express them.

We evaluated the prototype using two sample databases, MS Northwind and
Petstore. The generated system had a coverage of 71.6% — 179 of 250 ques-
tions which could be asked of the database were supported by the interface. We
assessed the system’s ability to infer resources automatically by comparing the
resources constructed by the generator with a manually constructed NLIDB sys-
tem for each sample database. The results of this comparison are presented in

Towards a Bootstrapping NLIDB System 203

Table [and show that whilst resources that rely on database metadata can be
identified quite accurately, linguistic resources which are identified using heuris-
tics over textual metadata are less reliable.

3 Conclusions

Although the prototype made several simplifying assumptions about the nature
of the database, it serves as a proof of concept showing that simple inferenc-
ing techniques can achieve results, and highlights the areas where more complex
techniques are required (in particular, the identification of linguistic descriptions
for relations). However, it is not the case that automatic inferencing will always
be possible, and the limiting factors set out below may entail supervision, or
may even mean that no resources can be inferenced at all. Our future research
plans include extending the scope of our metadata analysis to include additional
sources of information, as discussed above, to address these limitations.

Structure and Normalisation

Codd [14] proposes an extension to the relational model (RM/T) to align it with
predicate logic. In this context he introduces the notion of ”property integrity”,
under which each entity is represented by a single-valued E-relation and its de-
pendent properties (or characteristics) are grouped into subsidiary P-relations.
Inferring semantic dependencies from a database normalised to this extent (to
4NF) would be trivial; conversely, a data warehousing database with a flat struc-
ture and a large number of columns per relation might prove intractable.

Atomicity

Our task is made much easier if the entities within the database are represented
atomically; of course in practice this will seldom be the case as the entities
modelled by the database will have feature-based values which will be decom-
posed into column tuples. Whether or not the system can recognise these tuples
will depend on a variety of incidental database-specific factors. There are various
heuristics which we can throw at the problem, for example: using a domain ontol-
ogy; scanning query expressions in derived tables or cached queries for common
projections; analysing data content, and so on.

Nonetheless any relational database will almost certainly contain many non-
atomic characteristic entities and, unless it is in 4NF, it is highly unlikely that
they can all be recovered automatically. This is therefore an area where the sys-
tem will require supervision if it is to function effectively.

Lexicalisation and Symbolic Values

The process of mapping entities onto concepts in the domain ontology will often
involve string matching, either as part of the process of attempting to infer a
semantic class or as a fallback strategy. In some instances the column names will
be meaningful strings and there will also be string descriptions, in others there
may be little lexical information available at all. Similarly, the data values may

204 C. Hallett and D. Hardcastle

be more or less tractable to the system; in particular if the data consists only of
symbolic values or field codes then we can infer very little about its meaning.

Metadata Quality

In practice we cannot rely on the quality of metadata in the field. For example,
we may encounter databases where foreign key information is not defined in
the metadata, it is simply known to developers, where columns are mislabelled,
for example due to merging of legacy data sets, where default values, unique
constraints and referential constraints are not formally encoded, and so on. In
such instances the system will be unable to infer the information required to
build the query engine.

References

1. Hallett, C., Scott, D., Power, R.: Composing questions through conceptual author-
ing. Computational Linguistics (2007)

2. Kaplan, S.J.: Designing a portable natural language database query system. ACM
Trans. Database Syst. 9(1), 1-19 (1984)

3. Harris, L.R.: The ROBOT system: Natural language processing applied to data
base query. In: ACM 1978: Proceedings of the 1978 annual conference, pp. 165—
172. ACM Press, New York (1978)

4. Alshawi, H.: The Core Language Engine. ACL-MIT Press Series in Natural Lan-
guage Processing. MIT Press, Cambridge (1992)

5. Tang, L.R., Mooney, R.J.: Using multiple clause constructors in inductive logic pro-
gramming for semantic parsing. In: EMCL 2001: Proceedings of the 12th European
Conference on Machine Learning, London, UK, pp. 466—477. Springer, Heidelberg
(2001)

6. He, Y., Young, S.: A data-driven spoken language understanding system. In: IEEE
Workshop on Automatic Speech Recognition and Understanding (2003)

7. Kate, R.J., Mooney, R.J.: Using string-kernels for learning semantic parsers. In:
Proceedings of ACL 2006, pp. 913-920 (2006)

8. Popescu, A.M., Etzioni, O., Kautz, H.: Towards a theory of natural language in-
terfaces to databases. In: IUI 2003: Proceedings of the 8th international conference
on Intelligent user interfaces, pp. 149-157. ACM Press, New York (2003)

9. Power, R., Scott, D.: Multilingual authoring using feedback texts. In: Proceedings
of COLING-ACL 1998, Montreal, Canada, pp. 1053-1059 (1998)

10. Evans, R., Piwek, P., Cahill, L., Tipper, N.: Natural language processing in CLIME,
a multilingual legal advisory system. Natural Language Engineering (2006)

11. Hallett, C.: Generic querying of relational databases using natural language gener-
ation techniques. In: Proceedings of the 4th International Natural Language Gen-
eration Conference (INLG 2006), Sydney, Australia, pp. 95-102 (2006)

12. Hallett, C., Hardcastle, D.: A feasibility study for a bootstrapping nlg-driven nlidb
system. Technical Report TR2008/07, The Open University, Milton Keynes, UK
(2008)

13. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches, pp. 146—
171 (2005)

14. Codd, E.F.: Extending the database relational model to capture more meaning.
ACM Trans. Database Syst. 4(4), 397434 (1979)

	Introduction
	Related Work
	Query Interfaces Based on Conceptual Authoring

	Feasibility Study
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

